Density functional theory with modified dispersion correction for metals applied to molecular adsorption on Pt(111)†
Abstract
We have performed density functional theory calculations using our modified DFT-D2 dispersion correction for metals to investigate adsorption of a range of molecules on Pt(111). The agreement between our calculations and experimental adsorption energies ranging from 0 to 3 eV was excellent with a mean absolute deviation of 0.19 eV and a maximum deviation of 0.37 eV. Our results show that the DFT-D2 semiempirical dispersion correction can provide accurate results also for describing adsorption on metals, provided that relevant physical properties of the system are taken into account, such as shorter ranged dispersion because of screening by the conducting electrons and a lower polarizability of the core electrons in metals compared to isolated atoms.