Issue 37, 2016

Effect of chain microstructure on self-assembly and emulsification of amphiphilic poly(acrylic acid)-polystyrene copolymers

Abstract

In this study, a series of random copolymer poly(acrylic acid-co-styrene) (P(AA-co-St)) and block copolymer poly(acrylic acid)-b-polystyrene (PAA-b-PSt) with similar chemical composition but different chain microstructure were synthesized. The self-assembly behavior of random and block copolymers in selective solvent was investigated, and the structural evaluation of random and block copolymers micelles was carried out by transmission electron microscopy (TEM), dynamic light scattering (DLS) measurement, and X-ray photoelectron spectroscopy (XPS). Moreover, together with experimental characterization, the theoretical method dissipative particle dynamics (DPD) approach was applied to investigate the morphological structures of micelles composed from random and block copolymers. Results revealed that the structure of polymeric micelles is significantly affected by the distribution sequence of hydrophilic and hydrophobic monomers in copolymer chains. Furthermore, polymeric micelles based on P(AA-co-St) and PAA-b-PSt with about 50 mol% hydrophilic composition were chosen as the model to investigate the influence of micellar structure on emulsifying performance. For PAA-b-PSt micelles (B48), stable water-in-oil (w/o) emulsions could only obtained when the pH values were lower than 5. As a comparison, the P(AA-co-St) micelles (R49) had an excellent emulsification performance at 4–10 pH, and the pH-induced phase inversion derived from obtained emulsions observed at pH higher than 6. Preliminary results confirm that the micellar structure controlled by chain microstructure plays an important role in the interface behavior of polymer micelles. Compared with PAA-b-PSt micelles, P(AA-co-St) micelles have better interfacial performance and are more tailorable and controllable; thus they can be used as a model for further study of polymeric particulate emulsifiers. This paper provides new insight into the principles governing extremely high emulsifying efficiency of polymeric particulate emulsifiers and pH-responsive properties of the formed emulsions.

Graphical abstract: Effect of chain microstructure on self-assembly and emulsification of amphiphilic poly(acrylic acid)-polystyrene copolymers

Supplementary files

Article information

Article type
Paper
Submitted
18 Jul 2016
Accepted
30 Aug 2016
First published
30 Aug 2016

Phys. Chem. Chem. Phys., 2016,18, 26236-26244

Effect of chain microstructure on self-assembly and emulsification of amphiphilic poly(acrylic acid)-polystyrene copolymers

Y. Zhu, C. Yi, Q. Hu, W. Wei and X. Liu, Phys. Chem. Chem. Phys., 2016, 18, 26236 DOI: 10.1039/C6CP04978H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements