Issue 40, 2016

Application of classical simulations for the computation of vibrational properties of free molecules

Abstract

In this study, we investigate the ability of classical molecular dynamics (MD) and Monte-Carlo (MC) simulations for modeling the intramolecular vibrational motion. These simulations were used to compute thermally-averaged geometrical structures and infrared vibrational intensities for a benchmark set previously studied by gas electron diffraction (GED): CS2, benzene, chloromethylthiocyanate, pyrazinamide and 9,12-I2-1,2-closo-C2B10H10. The MD sampling of NVT ensembles was performed using chains of Nose–Hoover thermostats (NH) as well as the generalized Langevin equation thermostat (GLE). The performance of the theoretical models based on the classical MD and MC simulations was compared with the experimental data and also with the alternative computational techniques: a conventional approach based on the Taylor expansion of potential energy surface, path-integral MD and MD with quantum-thermal bath (QTB) based on the generalized Langevin equation (GLE). A straightforward application of the classical simulations resulted, as expected, in poor accuracy of the calculated observables due to the complete neglect of quantum effects. However, the introduction of a posteriori quantum corrections significantly improved the situation. The application of these corrections for MD simulations of the systems with large-amplitude motions was demonstrated for chloromethylthiocyanate. The comparison of the theoretical vibrational spectra has revealed that the GLE thermostat used in this work is not applicable for this purpose. On the other hand, the NH chains yielded reasonably good results.

Graphical abstract: Application of classical simulations for the computation of vibrational properties of free molecules

Supplementary files

Article information

Article type
Paper
Submitted
24 Aug 2016
Accepted
09 Sep 2016
First published
15 Sep 2016

Phys. Chem. Chem. Phys., 2016,18, 28325-28338

Application of classical simulations for the computation of vibrational properties of free molecules

D. S. Tikhonov, D. I. Sharapa, J. Schwabedissen and V. V. Rybkin, Phys. Chem. Chem. Phys., 2016, 18, 28325 DOI: 10.1039/C6CP05849C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements