Issue 4, 2016

Tuning the selectivity toward CO evolution in the photocatalytic conversion of CO2 with H2O through the modification of Ag-loaded Ga2O3 with a ZnGa2O4 layer

Abstract

Stoichiometric evolutions of CO, H2, and O2 were achieved for the photocatalytic conversion of CO2 with H2O as an electron donor using Ag-loaded Zn-modified Ga2O3. The selectivity toward the evolution of CO over H2 can be controlled by varying the amount of Zn species added in the Ag-loaded Zn-modified Ga2O3 photocatalyst. The production of H2 gradually decreased with increasing amounts of Zn species from 0.1 to 10.0 mol%, whereas the evolution of CO was almost unchanged. The XRD, XAFS, and XPS measurements revealed that a ZnGa2O4 layer was generated on the surface of Ga2O3 by modification with Zn species. The formation of the ZnGa2O4 layer eliminated the proton reduction sites on Ga2O3, although the crystallinity, surface area, and morphology of Ga2O3 as well as the particle size and chemical state of Ag did not change. In conclusion, we designed a highly selective photocatalyst for the conversion of CO2 with H2O as an electron donor using Ag (the cocatalyst for the CO evolution), ZnGa2O4 (the inhibitor of the H2 production), and Ga2O3 (the photocatalyst).

Graphical abstract: Tuning the selectivity toward CO evolution in the photocatalytic conversion of CO2 with H2O through the modification of Ag-loaded Ga2O3 with a ZnGa2O4 layer

Supplementary files

Article information

Article type
Paper
Submitted
05 Aug 2015
Accepted
08 Oct 2015
First published
13 Oct 2015

Catal. Sci. Technol., 2016,6, 1025-1032

Tuning the selectivity toward CO evolution in the photocatalytic conversion of CO2 with H2O through the modification of Ag-loaded Ga2O3 with a ZnGa2O4 layer

Z. Wang, K. Teramura, Z. Huang, S. Hosokawa, Y. Sakata and T. Tanaka, Catal. Sci. Technol., 2016, 6, 1025 DOI: 10.1039/C5CY01280E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements