Issue 2, 2016

Novel nanoparticle catalysts for catalytic gas sensing

Abstract

The state-of-the-art approach to stabilize nanoparticles (NPs) for applications in heterogeneous catalysis is to support them on inert inorganic material, which is limited to low loadings of the catalytic component. However, applications such as catalytic gas sensing require a high density of catalytically active sites at a low total heat capacity. To offer an alternative to the supporting of NPs, the stabilization of catalytic NPs with organic ligands in solid state is presented. Therefore, the preparation strategy, consisting of NP synthesis and subsequent functionalization with mono- and bifunctional ligands, is introduced. The molecular linkage of Pt NPs with bifunctional amine ligands (ligand-linking) results in three-dimensional porous networks with ligand-free surface sites. The catalytic properties of ligand-stabilized NPs were investigated in a thermoelectric hydrogen sensor. In addition to an enhanced activity, the stability of the NPs can be significantly improved by ligand-linking. One reason may be that the bifunctional ligand is anchored on the NPs by two head groups. The criteria for ligand structures to enable a successful NP stabilization were identified. para-Phenylenediamine (PDA) combines the criteria and, consequently, by linking of Pt NPs with PDA a constant catalytic activity over more than 20 h on stream was achieved. Thus, ligand-stabilized NPs are presented as a novel catalyst for catalytic gas sensing.

Graphical abstract: Novel nanoparticle catalysts for catalytic gas sensing

Article information

Article type
Perspective
Submitted
14 Sep 2015
Accepted
23 Dec 2015
First published
07 Jan 2016

Catal. Sci. Technol., 2016,6, 339-348

Author version available

Novel nanoparticle catalysts for catalytic gas sensing

E. Morsbach, S. Kunz and M. Bäumer, Catal. Sci. Technol., 2016, 6, 339 DOI: 10.1039/C5CY01553G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements