An iron(ii) hydride complex of a ligand with two adjacent β-diketiminate binding sites and its reactivity†‡
Abstract
After lithiation of PYR-H2 (PYR = [(NC(Me)C(H)C(Me)NC6H3(iPr)2)2(C5H3N)]2−) – the precursor of an expanded β-diketiminato ligand system with two binding pockets – with KN(TMS)2 the reaction of the resulting potassium salt with FeBr2 led to a dinuclear iron(II) bromide complex [(PYR)Fe(μ-Br)2Fe] (1). Through treatment with KHBEt3 the bromide ligands could be replaced by hydrides to yield [PYR)Fe2(μ-H)2] (2), a distorted analogue of known β-diketiminato iron hydride complexes, as evidenced by NMR, Mößbauer and X-ray absorption spectroscopy, as well as by its reactivity: for instance, 2 reacts with the proton source lutidinium triflate via protonation of the hydride ligands to form an iron(II) product [(PYR)Fe2(OTf)2] (4), while CO2 inserts into the Fe–H bonds generating the formate complex [(PYR)Fe2(μ-HCOO)2] (5); in the presence of traces of water partial hydrolysis occurs so that [(PYR)Fe2(μ-OH)(μ-HCOO)] (6) is isolated. Altogether, the iron(II) chemistry supported by the PYR2− ligand is distinctly different from the one of nickel(II), where both, the arrangement of the two binding pockets and the additional pyridyl donor led to diverging features as compared with the corresponding system based on the parent β-diketiminato ligand.