Different magnetic responses observed in Co II4, Co II3 and Co II1-based MOFs†
Abstract
Four magnetic MOFs with anisotropic CoII ions, {[Co5(H2O)2(μ3-OH)2(atz)2(stp)2]·1.5H2O}n (1), {[Co5(H2O)2(μ3-OH)2(trz)2(stp)2]·1.3H2O}n (2), {[Co5(H2O)6(μ3-OH)2(trz)2(stp)2]·2.5CH3OH}n (3) and {[Co3(H2O)4(Hdatrz)2(stp)2]·3H2O}n (4) (stp3− = 2-sulfoterephthalate, trz− = 1,2,4-triazolate, atz− = 3-amino-1,2,4-triazolate and Hdatrz = 3,5-diamino-1,2,4-triazole) were solvothermally isolated by varying the substituent groups appended on the N-heterocyclic triazole and structurally and magnetically characterized. Structural analyses indicate that the former two complexes are crystallographically isostructural, exhibiting pillared-layer frameworks with mixed triazolyl and carboxylate extended CoII4 + CoII1 layers supported by rigid stp3− connectors. Complex 3 is built from butterfly-shaped CoII4 cluster-based layers, which are interconnected with single cobalt(II) octahedra by ditopic stp3− bridges. By contrast, complex 4 consists of linear {Co3(μ-N1,N4-Hdatrz)2} subunits, which are extended by 3-connected stp3− linkers into a stable 3D framework. Magnetically, 1 exhibits ferromagnetic ordering below 2.7 K due to the well-organized alignment of the non-compensated resultant moment from octahedra and tetrahedral cobalt(II) carriers, while 3 is in a non-zero paramagnetic state above 2.0 K resulting from the coexistence of intermetallic ferromagnetic and antiferromagnetic interactions. The magnetic competition between weak inter-subunit antiferromagnetic interactions and the external magnetic field makes 4 behave as a field-induced metamagnet with a critical field of 27.5 kOe. These interesting magnetostructural results suggest that the anisotropy of the moment carrier and the interlayer/intersubunit separations significantly dominate the magnetic responses in extended MOFs, providing an informative platform for the further development of interesting magnetic materials, both of academic and industrial interest.