Issue 27, 2016

Optimum bifunctionality in a 2-(2-pyridyl-2-ol)-1,10-phenanthroline based ruthenium complex for transfer hydrogenation of ketones and nitriles: impact of the number of 2-hydroxypyridine fragments

Abstract

Considerable differences in reactivity and selectivity for 2-hydroxypyridine (2-HP) derived ruthenium complexes in transfer hydrogenation are described. Bifunctional Ru(II)-(phenpy-OH) [phenpy-OH: 2-(2-pyridyl-2-ol)-1,10-phenanthroline] complex (2) exhibited excellent catalytic activity in transfer hydrogenation (TH) of ketones and nitriles. Notably, in comparison with all the reported 2-hydroxypyridine (2-HP) derived ruthenium complexes in transfer hydrogenation, complex 2 displayed significantly higher activity. Additionally, exploiting the metal–ligand cooperativity in complex 2, chemoselective TH of ketones was achieved and sterically demanding ketones were readily reduced. An outer-sphere mechanism is proposed for this system as exogenous PPh3 has no significant effect on the rate of this reaction. This is a rare example of a highly active bifunctional Ru(II) catalyst bearing only one 2-HP unit.

Graphical abstract: Optimum bifunctionality in a 2-(2-pyridyl-2-ol)-1,10-phenanthroline based ruthenium complex for transfer hydrogenation of ketones and nitriles: impact of the number of 2-hydroxypyridine fragments

Supplementary files

Article information

Article type
Paper
Submitted
17 May 2016
Accepted
13 Jun 2016
First published
13 Jun 2016

Dalton Trans., 2016,45, 11162-11171

Optimum bifunctionality in a 2-(2-pyridyl-2-ol)-1,10-phenanthroline based ruthenium complex for transfer hydrogenation of ketones and nitriles: impact of the number of 2-hydroxypyridine fragments

B. Paul, K. Chakrabarti and S. Kundu, Dalton Trans., 2016, 45, 11162 DOI: 10.1039/C6DT01961G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements