Electrochemically reduced graphene oxide on silicon nanowire arrays for enhanced photoelectrochemical hydrogen evolution
Abstract
Photoelectrochemical (PEC) water splitting into hydrogen and oxygen by sunlight is a promising approach to solve energy and environmental problems. In this work, silicon nanowire arrays (SiNWs) photocathodes decorated with reduced graphene oxide (rGO) for PEC water splitting were successfully prepared by a flexible and scalable electrochemical reduction method. The SiNWs photocathode with the optimized rGO decoration (SiNWs/rGO20) shows an enhanced activity with a much higher photocurrent density and significantly positive shift of onset potential compared to the bare SiNWs arrays for the hydrogen evolution reaction (HER). The enhanced PEC activity is ascribed to the high electrical conductivity of rGO and improved separation of the photogenerated charge carriers. This work not only demonstrates a facile, rapid and tunable electrochemical reduction method to produce rGO, but also exhibits an efficient protocol to enhance the PEC water splitting of silicon-based materials.