Challenges in polyoxometalate-mediated aerobic oxidation catalysis: catalyst development meets reactor design
Abstract
Selective catalytic oxidation is one of the most widely used chemical processes. Ideally, highly active and selective catalysts are used in combination with molecular oxygen as oxidant, leading to clean, environmentally friendly process conditions. For homogeneous oxidation catalysis, molecular metal oxide anions, so-called polyoxometalates (POMs) are ideal prototypes which combine high reactivity and stability with chemical tunability on the molecular level. Typically, POM-mediated aerobic oxidations are biphasic, using gaseous O2 and liquid reaction mixtures. Therefore, the overall efficiency of the reaction is not only dependent on the chemical components, but requires chemical engineering insight to design reactors with optimized productivity. This Perspective shows that POM-mediated aerobic liquid-phase oxidations are ideal reactions to be carried out in microstructured flow reactors as they enable facile mass and energy transfer, provide large gas–liquid interfaces and can be easily upscaled. Recent advances in POM-mediated aerobic catalytic oxidations are therefore summarized with a focus on technological importance and mechanistic insight. The principles of reactor design are discussed from a chemical engineering point of view with a focus on homogeneous oxidation catalysis using O2 in microfluidic systems. Further, current limitations to catalytic activity are identified and future directions based on combined chemistry and chemical engineering approaches are discussed to show that this approach could lead to sustainable production methods in industrial chemistry based on alternative energy sources and chemical feedstocks.