Issue 3, 2016

The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries

Abstract

The energy density delivered by a Li-ion battery is a key parameter that needs to be significantly increased to address the global question of energy storage for the next 40 years. This quantity is directly proportional to the battery voltage (V) and the battery capacity (C) which are difficult to improve simultaneously when materials exhibit classical cationic redox activity. Recently, a cumulative cationic (M4+/M5+) and anionic (2O2−/(O2)n) redox activity has been demonstrated in the Li-rich Li2MO3 family of compounds, therefore enabling doubling of the energy density with respect to high-potential cathodes such as transition metal phosphates and sulfates. This paper aims to clarify the origin of this extra capacity by addressing some fundamental questions regarding reversible anionic redox in high-potential electrodes for Li-ion batteries. First, the ability of the system to stabilize the oxygen holes generated by Li-removal and to achieve a reversible oxo- to peroxo-like (2O2−/(O2)n) transformation is elucidated by means of a metal-driven reductive coupling mechanism. The penchant of the system for undergoing this reversible anionic redox or releasing O2 gas is then discussed with regards to experimental results for 3d- and 4d-based Li2MO3 phases. Finally, robust indicators are built as tools to predict which materials in the Li-rich TM-oxide family will undergo efficient and reversible anionic redox. The present finding provides insights into new directions to be explored for the development of high-energy density materials for Li-ion batteries.

Graphical abstract: The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
06 Oct 2015
Accepted
27 Oct 2015
First published
30 Oct 2015

Energy Environ. Sci., 2016,9, 984-991

Author version available

The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries

M. Saubanère, E. McCalla, J.-M. Tarascon and M.-L. Doublet, Energy Environ. Sci., 2016, 9, 984 DOI: 10.1039/C5EE03048J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements