Issue 6, 2016

High-energy-density lithium-ion battery using a carbon-nanotube–Si composite anode and a compositionally graded Li[Ni0.85Co0.05Mn0.10]O2 cathode

Abstract

A fully operational practical Li-rechargeable battery system delivering unprecedented high energy density with excellent cycle life was proposed using the state-of-the-art cathode and anode technologies. Based on the simple ball-milling process, a carbon nanotube (CNT)–Si composite anode with extremely stable long-term cycling, while providing a discharge capacity of 2364 mA h g−1 at a tap density of 1.103 g cm−3, was developed. For the cathode, a two-sloped full concentration gradient (TSFCG) Li[Ni0.85Co0.05Mn0.10]O2 cathode, designed to obtain maximum possible discharge capacity by having a Ni-enriched core and to simultaneously ensure high chemical and thermal stability by having an outer Mn-enriched layer, yielded a discharge capacity of 221 mA h g−1. Integrating the CNT–Si composite and the TSFCG cathode in a full cell configuration, the full cell generated an energy density of 350 W h kg−1 with excellent capacity retention for 500 cycles at 1 C rate, satisfying the energy density limit imposed by the drive range requirement for EVs. The proposed battery system satisfied the demands for energy storage for vehicle applications in terms of energy density, power and cycle life.

Graphical abstract: High-energy-density lithium-ion battery using a carbon-nanotube–Si composite anode and a compositionally graded Li[Ni0.85Co0.05Mn0.10]O2 cathode

Supplementary files

Article information

Article type
Paper
Submitted
18 Apr 2016
Accepted
20 May 2016
First published
20 May 2016

Energy Environ. Sci., 2016,9, 2152-2158

High-energy-density lithium-ion battery using a carbon-nanotube–Si composite anode and a compositionally graded Li[Ni0.85Co0.05Mn0.10]O2 cathode

J. H. Lee, C. S. Yoon, J. Hwang, S. Kim, F. Maglia, P. Lamp, S. Myung and Y. Sun, Energy Environ. Sci., 2016, 9, 2152 DOI: 10.1039/C6EE01134A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements