Issue 9, 2016

Forthcoming perspectives of photoelectrochromic devices: a critical review

Abstract

Re-thinking our relationship with energy resources and environmental equilibrium, towards anthropogenic sustainability, calls for innovative and energetically wise technologies. Smart devices adjusting their optical behaviour depending on the environmental conditions will allow remarkable energy savings. To this end, photoelectrochromic devices (PECDs) have captured, in the last two decades, the interest of many research groups and industrial players worldwide. These devices encompass a dual behavior, being able to generate energy and, concomitantly, deliver a smart optical response. For this reason, they are the ideal skins of future buildings, capable of modulating their behavior in response to changing external stimuli, like sunlight irradiance. PECDs have a wide range of applications, from solar shading in architectural glazing to rear view mirrors in automotives, or avionics. This review article explores the different design concepts standing at the basis of the devices that have appeared so far, shedding light on future perspectives. This work takes into account R&D issues and processing constraints as well as the potential exploitation of emerging solid-state materials promising important technological progress.

Graphical abstract: Forthcoming perspectives of photoelectrochromic devices: a critical review

Article information

Article type
Review Article
Submitted
26 May 2016
Accepted
11 Jul 2016
First published
11 Jul 2016

Energy Environ. Sci., 2016,9, 2682-2719

Forthcoming perspectives of photoelectrochromic devices: a critical review

A. Cannavale, P. Cossari, G. E. Eperon, S. Colella, F. Fiorito, G. Gigli, H. J. Snaith and A. Listorti, Energy Environ. Sci., 2016, 9, 2682 DOI: 10.1039/C6EE01514J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements