Issue 1, 2016

Effect of humic acid on the kinetics of silver nanoparticle sulfidation

Abstract

The sulfidation of metallic silver nanoparticles (AgNP) observed in urban wastewater systems and in natural waters reduces their toxicity by several orders of magnitude. However, the reaction rate of this transformation is only poorly understood and the influence of humic acid (HA) on AgNP sulfidation has not been studied to date. We therefore investigate the sulfidation kinetics of AgNP reacted with bisulfide (HS) in the absence and presence of HA and evaluate different kinetic models to describe the observed reaction kinetics. Citrate-stabilized AgNP of different sizes (20–200 nm) were reacted with an excess of HS in the absence of HA as well as at HA concentrations ranging from 50 to 1000 mg L−1. The extent of AgNP sulfidation after the selected reaction times was determined by X-ray absorption spectroscopy (XAS). The overall sulfidation rate increased with decreasing AgNP size and increasing HA concentration. The sulfidation rate of the AgNP was best described by a diffusion-limited solid state reaction model (parabolic rate law). The corresponding half-lives of the AgNP ranged from minutes to hours. The increase of the sulfidation rate with increasing HA concentration may be explained by the adsorption of HA onto the AgNP surface facilitating the access of HS to the particle surface. The results from analytical transmission electron microscopy suggest that the AgNP were sulfidized asymmetrically in the absence of HA. In the presence of HA, the initially formed concentric core–shell Ag0–Ag2S structures developed into hollow Ag2S nanoparticles with increasing reaction time, possibly via the Kirkendall effect.

Graphical abstract: Effect of humic acid on the kinetics of silver nanoparticle sulfidation

Supplementary files

Article information

Article type
Paper
Submitted
28 Sep 2015
Accepted
13 Dec 2015
First published
15 Dec 2015

Environ. Sci.: Nano, 2016,3, 203-212

Author version available

Effect of humic acid on the kinetics of silver nanoparticle sulfidation

B. Thalmann, A. Voegelin, E. Morgenroth and R. Kaegi, Environ. Sci.: Nano, 2016, 3, 203 DOI: 10.1039/C5EN00209E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements