Issue 4, 2016

Bioaccumulation of 13C-fullerenol nanomaterials in wheat

Abstract

Fullerenol, an important water-soluble derivative of fullerene carbon nanomaterial, has been increasingly used in medicine and industry. The presence and release of carbon nanoparticles into the environment have raised concerns over potential impacts on human health and the environment. In this study, the bioaccumulation of fullerenol nanoparticles in wheat was investigated using 13C-labelling techniques. The dose and time-dependent bioaccumulation of fullerenol in wheat was observed, and most fullerenol (about 85.68–263.86% ID per g, percentage of dose per gram tissue) was found in roots. With prolonged culture times, the seedlings treated with relatively low concentrations of fullerenol nanoparticles (2.5 μg mL−1) showed significant increases in 13C content in roots, while 10.0 μg mL−1 fullerenol appeared to suppress this accumulation. Only very limited amounts (<4.13% ID per g) of fullerenol nanoparticles were translocated from roots to stems and leaves. The presence of fullerenol nanoparticles was confirmed by scanning electron microscopy, and small particles were found in the vascular cylinder of wheat roots. During the incubations with fullerenol nanoparticles at all test concentrations, the biomass gain of stems and leaves was unaffected, while root elongation was promoted. Fullerenol also improved the synthesis of chlorophyll in wheat during the 7 d observation period.

Graphical abstract: Bioaccumulation of 13C-fullerenol nanomaterials in wheat

Supplementary files

Article information

Article type
Paper
Submitted
14 Dec 2015
Accepted
29 May 2016
First published
03 Jun 2016

Environ. Sci.: Nano, 2016,3, 799-805

Bioaccumulation of 13C-fullerenol nanomaterials in wheat

C. Wang, H. Zhang, L. Ruan, L. Chen, H. Li, X. Chang, X. Zhang and S. Yang, Environ. Sci.: Nano, 2016, 3, 799 DOI: 10.1039/C5EN00276A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements