Issue 6, 2016

Combined experimental and computational approach to developing efficient photocatalysts based on Au/Pd–TiO2 nanoparticles

Abstract

Surface modified TiO2-based nanoparticles (the so-called second generation nanoparticles) have unique semiconducting properties. They act as efficient photocatalysts, demonstrating catalytic activity under UV-vis and light-emitting diode (mix-LED) light. Consequently, they can be used as versatile, low-cost, clean and environmentally benign components in many innovative solutions, e.g. treatment technology for a wide range of environmental pollutants. However, for commercial application of TiO2-based systems, it is crucial to develop nano-powders that can absorb light in the visible spectrum. Our investigation has demonstrated the potential benefits of using a chemoinformatics approach to obtaining knowledge on structural features responsible for the photocatalytic activity of second generation NPs under visible light. Through a combination of multiple linear regression (MLR) and a genetic algorithm (GA), we have developed a quantitative structure–properties relationship (Nano-QSPR) model (R2 = 0.89, RMSEC = 1.67, QLOO2 = 0.82, RMSECV = 2.18, QEXT2= 0.80, RMSEP = 1.46) based on the most relevant physicochemical properties that characterized selected Au/Pd–TiO2 NPs. According to the developed Nano-QSPR model, the anatase phase and palladium content are the main factors responsible for the higher activity of Au/Pd–TiO2 photocatalysts under visible light. It should be noted that the methodology presented here can serve as an important starting point for further design of new nanomaterials with enhanced functionality, supported by chemoinformatics methods.

Graphical abstract: Combined experimental and computational approach to developing efficient photocatalysts based on Au/Pd–TiO2 nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
01 Jul 2016
Accepted
25 Sep 2016
First published
27 Sep 2016
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Nano, 2016,3, 1425-1435

Combined experimental and computational approach to developing efficient photocatalysts based on Au/Pd–TiO2 nanoparticles

A. Mikolajczyk, A. Malankowska, G. Nowaczyk, A. Gajewicz, S. Hirano, S. Jurga, A. Zaleska-Medynska and T. Puzyn, Environ. Sci.: Nano, 2016, 3, 1425 DOI: 10.1039/C6EN00232C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements