Issue 6, 2016

Biofilm-enhanced continuous synthesis and stabilization of palladium nanoparticles (PdNPs)

Abstract

Biosynthesis of palladium nanoparticles (PdNPs) is considered an efficient and green method for catalytic applications. Reported short-term batch studies have demonstrated PdNP synthesis using suspended biomass, but the PdNPs tended to agglomerate to large sizes and be washed out along with the biomass under continuous operation. Biofilm is a promising alternative for continuous PdNP synthesis, as it contains significant extracellular polymeric substances (EPS) with functional groups able to adsorb/stabilize PdNPs, and the biofilm and its PdNPs are naturally retained. We tested continuous Pd nanoparticle (PdNP) synthesis using a denitrifying biofilm that promoted enzymatic and autocatalytic reduction of PdII to Pd0 on the surface of non-porous hollow-fiber membranes that delivered hydrogen gas (H2) as the electron donor. The biofilm retained >99% of PdNPs. Approximately one-half were bound as 20 to 100 nm grains on the cell surfaces, while the other half were dispersed as 3 to 4 nm Pd0 crystallites within the extracellular polymeric substance (EPS) matrix. When no biofilm was present, PdII was reduced autocatalytically to Pd0, which self-assembled to form larger aggregates in a continuous, yet fragile film on the membrane. As a result, the stabilized PdNP-biofilm catalyzed further the PdII reduction faster than the agglomerated Pd-film. These results document the beneficial roles of biofilm in enhancing PdNP production, and provide a baseline for practical long-term sustainable Pd recovery from waste streams using biofilm systems.

Graphical abstract: Biofilm-enhanced continuous synthesis and stabilization of palladium nanoparticles (PdNPs)

Supplementary files

Article information

Article type
Paper
Submitted
04 Aug 2016
Accepted
03 Oct 2016
First published
04 Oct 2016

Environ. Sci.: Nano, 2016,3, 1396-1404

Biofilm-enhanced continuous synthesis and stabilization of palladium nanoparticles (PdNPs)

C. Zhou, Z. Wang, A. K. Marcus and B. E. Rittmann, Environ. Sci.: Nano, 2016, 3, 1396 DOI: 10.1039/C6EN00308G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements