Issue 3, 2016

Vitamin E suppresses ex vivo osteoclastogenesis in ovariectomized rats

Abstract

Postmenopausal osteoporosis may be caused, in part, by oxidative stress and inflammation. Vitamin E is a strong antioxidant which has been shown to have anti-inflammatory and bone-protective effects. The objective of this study was to investigate the effects of various doses of supplemental vitamin E on osteoclastogenesis in ovariectomized rats. Sixty 12-month-old female Sprague-Dawley rats were sham-operated (Sham) or ovariectomized (Ovx; 4 groups) and fed a diet containing basal levels of vitamin E (75 mg D-α tocopherol acetate per kg diet) for 220 days. Rats in three of the Ovx groups were given supplemental doses of vitamin E (300, 525, and 750 mg D-α tocopherol acetate per kg diet) for the last 100 days. Femoral bone marrow cells were isolated, cultured, and osteoclasts were counted and normalized to 1000 total bone marrow cells. Blood monocyte and lymphocyte counts were also determined. Osteoclast number was significantly higher in the Ovx control group and was suppressed by all three doses of vitamin E, although more effectively in the Ovx group that received 300 mg per kg diet vitamin E. Additionally, vitamin E suppressed the Ovx-induced increase in monocyte and lymphocyte production. The results of this study suggest that vitamin E supplementation suppresses osteoclastogenesis, possibly by inhibiting monocyte and lymphocyte production.

Graphical abstract: Vitamin E suppresses ex vivo osteoclastogenesis in ovariectomized rats

Article information

Article type
Paper
Submitted
02 Sep 2015
Accepted
02 Feb 2016
First published
23 Feb 2016

Food Funct., 2016,7, 1628-1633

Author version available

Vitamin E suppresses ex vivo osteoclastogenesis in ovariectomized rats

S. A. Johnson, R. G. Feresin, D. Y. Soung, M. L. Elam and B. H. Arjmandi, Food Funct., 2016, 7, 1628 DOI: 10.1039/C5FO01066G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements