Physical and oxidation stability of self-emulsifying krill oil-in-water emulsions
Abstract
Krill oil is a unique source of omega-3 fatty acids since it is a mixture of phospholipids and triacylglycerols. Due to the presence of phospholipids, it can form oil-in-water emulsions without additional food additives. In this work, the physical stability of krill oil-in-water emulsions was determined at various pH values (3–7) and NaCl concentrations (50–1000 mM). The initial particle size ranged from 150 to 165 nm. The emulsions were the most stable at pH ≥ 5.0 and salt concentrations below 100 mM. Lipid oxidation was accelerated by iron and inhibited by Trolox and α-tocopherol. Trolox was a more effective antioxidant than α-tocopherol. α-Tocopherol had a better inhibitory effect when it was added after homogenization than when added to the lipid prior to homogenization. These results indicate that krill oil emulsions could represent a self-emulsifying, oxidatively stable source of omega-3 fatty acids that may be used in functional foods.