Issue 9, 2016

A combined supplementation of vitamin B12 and omega-3 fatty acids across two generations improves cardiometabolic variables in rats

Abstract

Our earlier studies indicate that micronutrients (vitamin B12, folic acid) and omega-3 fatty acids especially docosahexaenoic acid (DHA) are interlinked in one carbon cycle. The present study examines the effects of a sustained vitamin B12 deficiency/supplementation in the presence of omega-3 fatty acids across two generations on the pregnancy outcome and cardiometabolic profile [blood pressure, plasma lipid profile (cholesterol and triglycerides), plasma/liver fatty acid profile and hepatic lipid metabolism] in the second generation adult Wistar rat offspring. Two generations of animals were fed the following diets: control; vitamin B12 deficient; vitamin B12 supplemented; vitamin B12 deficient diet supplemented with omega-3 fatty acids; vitamin B12 and omega-3 fatty acid supplemented diets. Male offspring were sacrificed at 3 months of age. Vitamin B12 deficiency lowered the weight gain (p < 0.01) during pregnancy, increased systolic (p < 0.05) and diastolic (p < 0.01) blood pressure, and lowered the levels of plasma/liver DHA (p < 0.05 for both) but did not affect the lipid profile. Vitamin B12 supplementation showed weight gain, blood pressure and the fatty acid profile similar to the control. However, it increased (p < 0.05) the levels of plasma triglycerides. Omega-3 fatty acid supplementation to the vitamin B12 deficient group lowered the weight gain although the levels of cardiometabolic variables were comparable to the control. Omega-3 fatty acid supplementation in the presence of vitamin B12 improved the pregnancy outcome and all cardio-metabolic variables. Our study highlights the adverse effects of sustained vitamin B12 deficiency across two generations on the pregnancy outcome, fatty acid profile and blood pressure while a combined supplementation of vitamin B12 and omega-3 fatty acids is beneficial.

Graphical abstract: A combined supplementation of vitamin B12 and omega-3 fatty acids across two generations improves cardiometabolic variables in rats

Article information

Article type
Paper
Submitted
03 Feb 2016
Accepted
30 Jul 2016
First published
16 Aug 2016

Food Funct., 2016,7, 3910-3919

A combined supplementation of vitamin B12 and omega-3 fatty acids across two generations improves cardiometabolic variables in rats

A. Khaire, R. Rathod, K. Randhir, A. Kale and S. Joshi, Food Funct., 2016, 7, 3910 DOI: 10.1039/C6FO00148C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements