Issue 21, 2016

Zeolite and zeotype-catalysed transformations of biofuranic compounds

Abstract

Catalytic valorisation of biomass with solid functional materials has been recognised as a promising approach to produce value-added biochemicals and biofuels. Furanic compounds such as 5-hydroxymethylfurfural (HMF), 5-ethoxymethylfurfural, 2,5-dimethylfuran, 2,5-diformylfuran and 2,5-furandicarboxylic acid can be obtained from hexoses and pentoses via selective dehydration and subsequent etherification, hydrogenation, oxidation reactions, which show great potential for industrial applications to replace petroleum-based chemicals and fuels. Zeolite and zeotype micro- and mesoporous materials with tuneable acidity, good thermal stability and shape-selectivity have recently emerged as promising solid catalysts, exhibiting superior catalytic performance to other heterogeneous catalysts. This review focuses on the synthesis of biomass-derived furanic compounds catalysed by zeolitic materials, firstly introducing zeolite-catalysed hydrolysis of di-, oligo- and polysaccharides and isomerization reactions of monomeric sugars. Subsequently, the catalytic dehydration reactions of hexoses and pentoses to obtain HMF and furfural are reported. Particularly, a variety of reaction pathways towards upgrading of the resulting platform furanic molecules to valuable bioproducts over zeolitic materials are discussed.

Graphical abstract: Zeolite and zeotype-catalysed transformations of biofuranic compounds

Article information

Article type
Critical Review
Submitted
29 Aug 2016
Accepted
22 Sep 2016
First published
23 Sep 2016

Green Chem., 2016,18, 5701-5735

Zeolite and zeotype-catalysed transformations of biofuranic compounds

H. Li, S. Yang, A. Riisager, A. Pandey, R. S. Sangwan, S. Saravanamurugan and R. Luque, Green Chem., 2016, 18, 5701 DOI: 10.1039/C6GC02415G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements