Enhancement of laser-induced Fe plasma spectroscopy with dual-wavelength femtosecond double-pulse
Abstract
In this paper, we propose and demonstrate a study of Fe plasma using collinear dual-wavelength femtosecond double-pulse laser-induced breakdown spectroscopy (LIBS) with a fundamental wavelength (800 nm) and a second harmonic wavelength (400 nm) from Ti:sapphire laser. By varying the time separation of the dual-wavelength femtosecond double-pulse, the experimental results clearly show the signal enhancement up to a factor of 10 and more than 10 times, in comparison with it at 0 ps time separation. The electron temperature and electron density are analyzed as the basic parameters of plasma properties, and they are respectively based on the theory of Boltzmann plot and Stark broadening. It proves that dual-wavelength femtosecond double-pulse LIBS is excellent for enhancing the emission intensity of the signal.