Issue 9, 2016

On-chip droplet production regimes using surface acoustic waves

Abstract

Aqueous droplets suspended in an immiscible carrier fluid are a key tool in microfluidic chemical analysis platforms. The approaches for producing droplets in microfluidic devices can be divided into three general categories: batch emulsification, continuous production and tailored on-demand production. The major distinctions between each category are the rate of production and the degree of control over the droplet formation process in terms of the size and quantity. On-demand methods are highly desirable when, for example, small numbers or even single droplets of one sample type are required at a time. Here, we present a method for the on-demand production of femtolitre droplets, utilising a pressure source generated by high frequency surface acoustic waves (SAW). An increase in the continuous phase flow rate is enabled by a quasi-3D feature at the droplet production nozzle. A wide range of accessible flow rates permits the identification of different physical regimes in which droplets of different dimensions are produced. In the system investigated droplets measuring as little as 200 fl have been produced, ∼1/60th of the minimum volume previously reported. The experimental findings are supported by a numerical model which demonstrates the link between the number of droplets formed and the pulse length used.

Graphical abstract: On-chip droplet production regimes using surface acoustic waves

Supplementary files

Article information

Article type
Paper
Submitted
02 Nov 2015
Accepted
28 Mar 2016
First published
30 Mar 2016

Lab Chip, 2016,16, 1675-1683

On-chip droplet production regimes using surface acoustic waves

J. C. Brenker, D. J. Collins, H. Van Phan, T. Alan and A. Neild, Lab Chip, 2016, 16, 1675 DOI: 10.1039/C5LC01341K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements