Issue 5, 2016

A generalized formula for inertial lift on a sphere in microchannels

Abstract

Inertial microfluidics has been widely used in high-throughput manipulation of particles and cells by hydrodynamic forces, without the aid of externally applied fields. The performance of inertial microfluidic devices largely relies on precise prediction of particle trajectories that are determined by inertial lift acting on particles. The only way to accurately obtain lift forces is by direct numerical simulation (DNS); however, it is burdensome when applied to practical microchannels with complex geometries. Here, we propose a fitting formula for inertial lift on a sphere drawn from DNS data obtained in straight channels. The formula consists of four terms that represent the shear-gradient-induced lift, the wall-induced lift, the slip-shear lift, and the correction of the shear-gradient-induced lift, respectively. Notably, as a function of the parameters of a local flow field, it possesses good adaptability to complex channel geometries. This generalized formula is further implemented in the Lagrangian particle tracking method to realize fast prediction of particle trajectories in two types of widely used microchannels: a long serpentine and a double spiral microchannel, demonstrating its ability to efficiently design and optimize inertial microfluidic devices.

Graphical abstract: A generalized formula for inertial lift on a sphere in microchannels

Supplementary files

Article information

Article type
Paper
Submitted
12 Dec 2015
Accepted
12 Jan 2016
First published
12 Jan 2016

Lab Chip, 2016,16, 884-892

A generalized formula for inertial lift on a sphere in microchannels

C. Liu, C. Xue, J. Sun and G. Hu, Lab Chip, 2016, 16, 884 DOI: 10.1039/C5LC01522G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements