In vitro micro-physiological immune-competent model of the human skin
Abstract
Skin allergy, in particular, allergic contact dermatitis and irritant contact dermatitis, are common occupational and environmental health problems affecting the quality of life of a significant proportion of the world population. Since all new ingredients to be incorporated into a product are potential skin allergens, it is essential that these ingredients be first tested for their allergenic potential. However, despite the considerable effort using animal models to understand the underlying mechanism of skin sensitization, to date, the molecular and cellular responses due to skin contact with sensitizers are still not fully understood. To replace animal testing and to improve the prediction of skin sensitization, significant attention has been directed to the use of reconstructed organotypic in vitro models of human skin. Here we describe a miniaturized immune competent in vitro model of human skin based on 3D co-culture of immortalized human keratinocytes (HaCaT) as a model of the epidermis barrier and human leukemic monocyte lymphoma cell line (U937) as a model of human dendritic cells. The biological model was fitted in a microfluidic-based cell culture system that provides a dynamic cellular environment that mimics the in vivo environment of skin. The dynamic perfusion of culture media significantly improved the tight junction formation as evidenced by measuring higher values of TEER compared to static culture. This setting also maintained the high viability of cells over extended periods of time up to 17 days. The perfusion-based culture also allows growth of the cells at the air–liquid interface by exposing the apical side of the cells to air while providing the cell nutrients through a basolateral fluidic compartment. The microsystem has been evaluated to investigate the effect of the chemical and physical (UV irradiation) stimulation on the skin barrier (i.e. the TJ integrity). Three-tiered culture differential stimulation allowed the investigation of the role of the keratinocyte layer as a protection barrier to chemical/biological hazards.