Issue 14, 2016

Imaging the position-dependent 3D force on microbeads subjected to acoustic radiation forces and streaming

Abstract

Acoustic particle manipulation in microfluidic channels is becoming a powerful tool in microfluidics to control micrometer sized objects in medical, chemical and biological applications. By creating a standing acoustic wave in the channel, the resulting pressure field can be employed to trap or sort particles. To design efficient and reproducible devices, it is important to characterize the pressure field throughout the volume of the microfluidic device. Here, we used an optically trapped particle as probe to measure the forces in all three dimensions. By moving the probe through the volume of the channel, we imaged spatial variations in the pressure field. In the direction of the standing wave this revealed a periodic energy landscape for 2 μm beads, resulting in an effective stiffness of 2.6 nN m−1 for the acoustic trap. We found that multiple fabricated devices showed consistent pressure fields. Surprisingly, forces perpendicular to the direction of the standing wave reached values of up to 20% of the main-axis-values. To separate the direct acoustic force from secondary effects, we performed experiments with different bead sizes, which attributed some of the perpendicular forces to acoustic streaming. This method to image acoustically generated forces in 3D can be used to either minimize perpendicular forces or to employ them for specific applications in novel acoustofluidic designs.

Graphical abstract: Imaging the position-dependent 3D force on microbeads subjected to acoustic radiation forces and streaming

Supplementary files

Article information

Article type
Paper
Submitted
25 Apr 2016
Accepted
08 Jun 2016
First published
08 Jun 2016

Lab Chip, 2016,16, 2682-2693

Imaging the position-dependent 3D force on microbeads subjected to acoustic radiation forces and streaming

A. Lamprecht, S. Lakämper, T. Baasch, I. A. T. Schaap and J. Dual, Lab Chip, 2016, 16, 2682 DOI: 10.1039/C6LC00546B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements