Issue 22, 2016

A paper-based in vitro model for on-chip investigation of the human respiratory system

Abstract

Culturing cells at the air–liquid interface (ALI) is essential for creating functional in vitro models of lung tissues. We present the use of direct-patterned laser-treated hydrophobic paper as an effective semi-permeable membrane, ideal for ALI cell culture. The surface properties of the paper are modified through a selective CO2 laser-assisted treatment to create a unique porous substrate with hydrophilic regions that regulate fluid diffusion and cell attachment. To select the appropriate model, four promising hydrophobic films were compared with each other in terms of gas permeability and long-term strength in an aqueous environment (wet-strength). Among the investigated substrates, parchment paper showed the fastest rate of oxygen permeability (3 times more than conventional transwell cell culture membranes), with the least variation in its dry and wet tensile strengths (124 MPa and 58 MPa, remaining unchanged after 7 days of submersion in PBS).The final paper-based platform provides an ideal, robust, and inexpensive device for generating monolayers of lung epithelial cells on-chip in a high-throughput fashion for disease modelling and in vitro drug testing.

Graphical abstract: A paper-based in vitro model for on-chip investigation of the human respiratory system

Supplementary files

Article information

Article type
Communication
Submitted
07 Jul 2016
Accepted
26 Sep 2016
First published
27 Sep 2016

Lab Chip, 2016,16, 4319-4325

A paper-based in vitro model for on-chip investigation of the human respiratory system

R. Rahimi, S. S. Htwe, M. Ochoa, A. Donaldson, M. Zieger, R. Sood, A. Tamayol, A. Khademhosseini, A. M. Ghaemmaghami and B. Ziaie, Lab Chip, 2016, 16, 4319 DOI: 10.1039/C6LC00866F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements