Issue 5, 2016

Analyses of methyltransferases across the pathogenicity spectrum of different mycobacterial species point to an extremophile connection

Abstract

Tuberculosis is a devastating disease, taking one human life every 20 seconds globally. We hypothesize that professional pathogens such as M.tb have acquired specific features that might assist in causing infection, persistence and transmissible pathology in their host. We have identified 121 methyltransferases (MTases) in the M.tb proteome, which use a variety of substrates – DNA, RNA, protein, intermediates of mycolic acid biosynthesis and other fatty acids – that are involved in cellular maintenance within the host. A comparative analysis of the proteome of the virulent strain H37Rv and the avirulent strain H37Ra identified 3 MTases, which displayed significant variations in terms of N-terminal extension/deletion and point mutations, possibly impacting various physicochemical properties. The cross-proteomic comparison of MTases of M.tb H37Rv with 15 different Mycobacterium species revealed the acquisition of novel MTases in a MTB complex as a function of evolution. Phylogenetic analysis revealed that these newly acquired MTases showed common roots with certain extremophiles such as halophilic and acidophilic organisms. Our results establish an evolutionary relationship of M.tb with halotolerant organisms and also the role of MTases of M.tb in withstanding the host osmotic stress, thereby pointing to their likely role in pathogenesis, virulence and niche adaptation.

Graphical abstract: Analyses of methyltransferases across the pathogenicity spectrum of different mycobacterial species point to an extremophile connection

Supplementary files

Article information

Article type
Paper
Submitted
24 Nov 2015
Accepted
04 Mar 2016
First published
07 Mar 2016

Mol. BioSyst., 2016,12, 1615-1625

Author version available

Analyses of methyltransferases across the pathogenicity spectrum of different mycobacterial species point to an extremophile connection

S. Grover, P. Gupta, P. S. Kahlon, S. Goyal, A. Grover, K. Dalal, . Sabeeha, N. Z. Ehtesham and S. E. Hasnain, Mol. BioSyst., 2016, 12, 1615 DOI: 10.1039/C5MB00810G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements