Issue 5, 2016

Crystallization of a perovskite film for higher performance solar cells by controlling water concentration in methyl ammonium iodide precursor solution

Abstract

An optimal small amount of water added into methyl ammonium iodide (MAI) solution in isopropyl alcohol (IPA) helps perovskite crystallization and leads to larger grain size from sequential deposition of perovskite films. The concentration of water was varied from 1% to 7% (vol% of IPA) in MAI solution and optical absorption, crystallization, morphology of perovskite films and their photovoltaic performance were studied in perovskite solar cells. 5% by volume was found to lead to preferential crystallization in the (110) plane with grain size about three times that of perovskite films prepared without adding water into the MAI solution. The optimal water concentration of 5% by volume in the MAI solution led to average perovskite grain size of ∼600 nm and solar cell efficiency of 12.42% at forward scan with a rate of 0.5 V s−1. Device performance decreases after increasing water concentration beyond 5% in the MAI solution due to formation of the PbI2 phase. Transient photocurrent and photovoltage measurements show the shortest charge transport time at 0.99 μs and the longest charge carrier life time at 13.6 μs for perovskite films prepared from 5% water in MAI solution, which improved perovskite solar cell efficiency from 9.04% to 12.42%.

Graphical abstract: Crystallization of a perovskite film for higher performance solar cells by controlling water concentration in methyl ammonium iodide precursor solution

Supplementary files

Article information

Article type
Paper
Submitted
27 Sep 2015
Accepted
22 Dec 2015
First published
23 Dec 2015

Nanoscale, 2016,8, 2693-2703

Crystallization of a perovskite film for higher performance solar cells by controlling water concentration in methyl ammonium iodide precursor solution

N. Adhikari, A. Dubey, E. A. Gaml, B. Vaagensmith, K. M. Reza, S. A. A. Mabrouk, S. Gu, J. Zai, X. Qian and Q. Qiao, Nanoscale, 2016, 8, 2693 DOI: 10.1039/C5NR06687E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements