Three-dimensional inverse design of nanopatterns with block copolymers and homopolymers
Abstract
We propose a facile inverse design strategy to generate three-dimensional (3D) nanopatterns by using either block copolymers or a binary homopolymer blend via dissipative particle dynamics simulations. We find that the composition window of block copolymers to form a specific 3D morphology can be expanded when the self-assembly of block copolymers is directed by templates. We also find that a binary homopolymer blend can serve as a better candidate in the inverse templating design, since they have similar performances on recovering the target pattern, with much lower cost. This strategy is proved efficient for fabricating templates with desired topographical configuration, and the inverse design idea sheds lights on better control and design of materials with complex nanopatterns.