Selenium-containing organic nanoparticles as silent precursors for ultra-sensitive thiol-responsive transmembrane anion transport†
Abstract
An anion transporter with a selenoxide group was able to form nanoparticles in water, whose activity was fully turned off due to the aggregation effect. The formed nanoparticles have a uniform size and can be readily dispersed in water at high concentrations. Turn-on of the nanoparticles by reducing molecules is proposed to be a combined process, including the reduction of selenoxide to selenide, disassembly of the nanoparticles and location of the transporter to the lipid membrane. Accordingly, a special acceleration phase can be observed in the turn-on kinetic curves. Since turn-on of the nanoparticles is quantitatively related to the amount of reductant, the nanoparticles can be activated in a step-by-step manner. Due to the sensibility of this system to thiols, cysteine can be detected at low nanomolar concentrations. This ultra-sensitive thiol-responsive transmembrane anion transport system is quite promising in biological applications.