Issue 4, 2016

Synthesis of aligned symmetrical multifaceted monolayer hexagonal boron nitride single crystals on resolidified copper

Abstract

Atomically smooth hexagonal boron nitride (h-BN) films are considered as a nearly ideal dielectric interface for two-dimensional (2D) heterostructure devices. Reported mono- to few-layer 2D h-BN films, however, are mostly small grain-sized, polycrystalline and randomly oriented. Here we report the growth of centimetre-sized atomically thin h-BN films composed of aligned domains on resolidified Cu. The films consist of monolayer single crystalline triangular and hexagonal domains with size of up to ∼10 μm. The domains converge to symmetrical multifaceted shapes such as “butterfly” and “6-apex-star” and exhibit ∼75% grain alignment for over millimetre distances as verified through transmission electron microscopy. Scanning electron microscopy images reveal that these domains are aligned for over centimetre distances. Defect lines are generated along the grain boundaries of mirroring h-BN domains due to the two different polarities (BN and NB) and edges with the same termination. The observed triangular domains with truncated edges and alternatively hexagonal domains are in accordance with Wulff shapes that have minimum edge energy. This work provides an extensive study on the aligned growth of h-BN single crystals over large distances and highlights the obstacles that are needed to be overcome for a 2D material with a binary configuration.

Graphical abstract: Synthesis of aligned symmetrical multifaceted monolayer hexagonal boron nitride single crystals on resolidified copper

Supplementary files

Article information

Article type
Paper
Submitted
14 Nov 2015
Accepted
30 Dec 2015
First published
31 Dec 2015

Nanoscale, 2016,8, 2434-2444

Synthesis of aligned symmetrical multifaceted monolayer hexagonal boron nitride single crystals on resolidified copper

R. Y. Tay, H. J. Park, G. H. Ryu, D. Tan, S. H. Tsang, H. Li, W. Liu, E. H. T. Teo, Z. Lee, Y. Lifshitz and R. S. Ruoff, Nanoscale, 2016, 8, 2434 DOI: 10.1039/C5NR08036C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements