Issue 12, 2016

Credible evidence for the passivation effect of remnant PbI2 in CH3NH3PbI3 films in improving the performance of perovskite solar cells

Abstract

The role of remnant PbI2 in CH3NH3PbI3 films is still controversial, some investigations have revealed that the remnant PbI2 plays a passivation role, reduces the charge recombination in perovskite solar cells (PSCs), and improves the performance of PSCs, but the opposing views state that remnant PbI2 has no passivation effect and it would deteriorate the stability of the devices. In our investigation, the CH3NH3PbI3 films have been prepared by a two-step spin-coating method and the content of the remnant PbI2 in CH3NH3PbI3 films has been tuned by varying the preparation temperature. It has been found that increasing the heating temperature could increase the coverage of spin-coated PbI2 films, which has led to high coverage CH3NH3PbI3 films and more remnant PbI2 in CH3NH3PbI3 films, and as a result, the performance of PSCs was enhanced obviously and the maximum power conversion efficiency of 14.32 ± 0.28% was achieved by the PSCs prepared at 130/120 °C (PbI2 films were heated at 130 °C and CH3NH3PbI3 films were heated at 120 °C). Furthermore, the dark current, electrochemical impedance spectroscopy and time-resolved fluorescence emission decay measurements revealed that the charge recombination in PSCs has been gradually suppressed and the fluorescence emission lifetime has gradually increased with the content of remnant PbI2 increasing. Thus, the passivation effects of the unreacted and decomposed PbI2 in improving the performance of PSCs have been confirmed unquestionably.

Graphical abstract: Credible evidence for the passivation effect of remnant PbI2 in CH3NH3PbI3 films in improving the performance of perovskite solar cells

Supplementary files

Article information

Article type
Paper
Submitted
25 Nov 2015
Accepted
18 Feb 2016
First published
19 Feb 2016

Nanoscale, 2016,8, 6600-6608

Author version available

Credible evidence for the passivation effect of remnant PbI2 in CH3NH3PbI3 films in improving the performance of perovskite solar cells

S. Wang, W. Dong, X. Fang, Q. Zhang, S. Zhou, Z. Deng, R. Tao, J. Shao, R. Xia, C. Song, L. Hu and J. Zhu, Nanoscale, 2016, 8, 6600 DOI: 10.1039/C5NR08344C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements