Issue 17, 2016

Enhancing local luminescence in a hollow ZnO microcolumn by antiresonant reflecting

Abstract

Hollow ZnO microcolumns with size induced photoluminescence and cathodoluminescence properties were prepared by a thermal chemical vapor transport and condensation method. It was found that the luminescence emission could be confined in the nano-sized hollow core and the wavelength dependent light intensity could be influenced by the geometric structure of the ZnO microcolumn, which can act as a hollow optical waveguide. Based on the antiresonant reflection in the optical waveguide, we established a theoretical model to address the field enhancement in the hollow ZnO microcolumn, which systematically clarifies the influence of the geometric structure of the microcolumn on the field enhancement. We report for the first time, the enhanced emission of the near ultraviolet light (working wavelength of 385 nm) along the axial direction of the ZnO microcolumn. The corresponding microsized light emitter has also been obtained. Experiments agree well with both theoretical predictions and computer simulations based on the finite-difference time-domain method with perfectly matched layer boundary conditions. These findings provide valuable information for the application of ZnO micro- and nanostructures in optoelectronic devices.

Graphical abstract: Enhancing local luminescence in a hollow ZnO microcolumn by antiresonant reflecting

Article information

Article type
Paper
Submitted
01 Feb 2016
Accepted
29 Mar 2016
First published
01 Apr 2016

Nanoscale, 2016,8, 9226-9233

Enhancing local luminescence in a hollow ZnO microcolumn by antiresonant reflecting

Y. H. Yang, X. T. He, H. M. Dong, J. W. Dong, H. X. Lei, B. J. Li and G. W. Yang, Nanoscale, 2016, 8, 9226 DOI: 10.1039/C6NR00911E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements