Issue 13, 2016

A study of the depth and size of concave cube Au nanoparticles as highly sensitive SERS probes

Abstract

High and uniform near fields are localized at the eight similar sharp corners of cubic gold nanoparticles. Moreover, by introducing concavity in the particle lateral planes, such field intensities can be further increased and tuned in the near infrared region without altering the overall size of the nanoparticles. Herein, we perform a thorough investigation of the morphological, crystallographic and plasmonic properties of concave gold nanocubes (GNCs) in the sub-70 nm size range, for their potential application as highly efficient SERS substrates in size-limiting cases. Theoretical calculations indicate that the highest increment of the near-field is located at the eight sharp tips and, interestingly, a medium near-field increment is also activated over the volume next to the concave surface. Remarkably, the plasmonic response of the concave cubic morphology showed great sensitivity to the concavity degree. Experimental SERS analysis nicely matches the outcome of the theoretical model, confirming that medium-sized concave GNCs (35 nm side length) possess the highest SERS activity upon excitation with a 633 nm laser, whereas larger 61 nm side concave GNCs dominate the optical response at 785 nm. Due to their size-intensity trade off, we envision that such small concave gold nanocubes can provide a highly active and efficient SERS platform for size-limiting applications, especially when near infrared excitations are required.

Graphical abstract: A study of the depth and size of concave cube Au nanoparticles as highly sensitive SERS probes

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
09 Feb 2016
Accepted
25 Feb 2016
First published
02 Mar 2016

Nanoscale, 2016,8, 7326-7333

A study of the depth and size of concave cube Au nanoparticles as highly sensitive SERS probes

J. M. Romo-Herrera, A. L. González, L. Guerrini, F. R. Castiello, G. Alonso-Nuñez, O. E. Contreras and R. A. Alvarez-Puebla, Nanoscale, 2016, 8, 7326 DOI: 10.1039/C6NR01155A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements