Gold nanorod@silica-carbon dots as multifunctional phototheranostics for fluorescence and photoacoustic imaging-guided synergistic photodynamic/photothermal therapy†
Abstract
Phototheranostics, which is the application of light in the diagnostic imaging and therapy of cancer, has shown great promise for multimodal cancer imaging and effective therapy. Herein, we developed multifunctional gold nanorod@silica-carbon dots (GNR@SiO2-CDs) as a phototheranostic agent by incorporating carbon dots (CDs) with gold nanorods (GNRs), using SiO2 as a scaffold. In GNR@SiO2-CDs, the GNRs act as both photoacoustic (PA) imaging and photothermal therapy (PTT) agents, and the CDs serve as fluorescence (FL) imaging and photodynamic therapy (PDT) agents. The introduction of SiO2 not only improves the chemical stability of the GNRs and CDs in the physiological environment but also prevents the absolute quenching of the fluorescence of the CDs by GNRs. These collective properties make GNR@SiO2-CDs a novel phototheranostic agent, in which high sensitivity and good spatial resolution of FL/PA imaging can be achieved to guide PDT/PTT treatments through i.v. administration. The combination of PDT and PTT proved to be more efficient in killing cancer cells compared to PDT or PTT alone under a low dose of laser irradiation (≤0.5 W cm−2). Furthermore, GNR@SiO2-CDs could be cleared out from the body of mice, indicating the low toxicity of this phototheranostic agent. Our work highlights the potential of using GNRs and CDs as novel phototheranostic agents for multifunctional cancer therapies.