Issue 38, 2016

Hidden symmetry of small spherical viruses and organization principles in “anomalous” and double-shelled capsid nanoassemblies

Abstract

We propose the principles of structural organization in spherical nanoassemblies with icosahedral symmetry constituted by asymmetric protein molecules. The approach modifies the paradigmatic geometrical Caspar and Klug (CK) model of icosahedral viral capsids and demonstrates the common origin of both the “anomalous” and conventional capsid structures. In contrast to all previous models of “anomalous” viral capsids the proposed modified model conserves the basic structural principles of the CK approach and reveals the common hidden symmetry underlying all small viral shells. We demonstrate the common genesis of the “anomalous” and conventional capsids and explain their structures in the same frame. The organization principles are derived from the group theory analysis of the positional order on the spherical surface. The relationship between the modified CK geometrical model and the theory of two-dimensional spherical crystallization is discussed. We also apply the proposed approach to complex double-shelled capsids and capsids with protruding knob-like proteins. The introduced notion of commensurability for the concentric nanoshells explains the peculiarities of their organization and helps to predict analogous, but yet undiscovered, double-shelled viral capsid nanostructures.

Graphical abstract: Hidden symmetry of small spherical viruses and organization principles in “anomalous” and double-shelled capsid nanoassemblies

Article information

Article type
Paper
Submitted
19 Jun 2016
Accepted
30 Aug 2016
First published
30 Aug 2016

Nanoscale, 2016,8, 16976-16988

Hidden symmetry of small spherical viruses and organization principles in “anomalous” and double-shelled capsid nanoassemblies

S. B. Rochal, O. V. Konevtsova, A. E. Myasnikova and V. L. Lorman, Nanoscale, 2016, 8, 16976 DOI: 10.1039/C6NR04930C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements