Issue 46, 2016

Ordered mesoporous carbons codoped with nitrogen and iron as effective catalysts for oxygen reduction reaction

Abstract

Doping with foreign atoms is an effective approach to significantly enhance the catalytic performance of carbon materials for oxygen reduction reaction (ORR). In this paper, a colloidal silica template method was employed to synthesize nitrogen and iron codoped ordered mesoporous carbon for ORR electrocatalysis. The carbon materials were thoroughly characterized by transmission electron microscopy, Raman spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy measurements. The porosity was quantified by nitrogen adsorption/desorption measurements that showed the formation of ordered mesoporous structures with a BET specific surface area up to 953.8 m2 gāˆ’1 and the mesopores mostly centered at ca. 25 nm, close to the size of the colloidal silica. The resulting mesoporous carbon exhibited apparent ORR activity in alkaline media, which was highly comparable to that of commercial Pt/C (20 wt%), with the onset potential at +0.99 V vs. RHE. This was ascribed largely to nitrogen dopants, with additional contributions from the trace amounts of iron dopants, and the reactions appeared to be facilitated by the formation of a mesoporous structure. Moreover, the mesoporous carbon showed better stability, resistance against fuel crossover, and selective activity than Pt/C. This work demonstrates a new paradigm for the preparation of heteroatom-doped carbon materials that are promising alternatives to Pt-based catalysts for fuel cells.

Graphical abstract: Ordered mesoporous carbons codoped with nitrogen and iron as effective catalysts for oxygen reduction reaction

Supplementary files

Article information

Article type
Paper
Submitted
26 Jul 2016
Accepted
03 Oct 2016
First published
05 Oct 2016

Nanoscale, 2016,8, 19249-19255

Ordered mesoporous carbons codoped with nitrogen and iron as effective catalysts for oxygen reduction reaction

X. Liu, S. Zou and S. Chen, Nanoscale, 2016, 8, 19249 DOI: 10.1039/C6NR05884A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements