Issue 2, 2016

Effective chemiluminogenic systems based on acridinium esters bearing substituents of various electronic and steric properties

Abstract

A series of 10-methyl-9-(phenoxycarbonyl)acridinium trifluoromethanesulfonates (XAEs), bearing substituents of various characteristics in the lateral benzene ring (2-halogen, 2,6-dihalogen, 2-trifluoromethyl, 2-nitro, 2-methoxy, 3-halogen and 4-halogen) were synthesized with high yields, identified and subjected to a physicochemical and theoretical investigation. The main task of the work was to assess the mechanism and optimal conditions of light emission in various liquid systems based on the above salts in order to evaluate their potential usefulness as chemiluminescence (CL) labels and indicators in ultra-sensitive analyses. Density functional theory (DFT) calculations were performed to investigate the detailed mechanism of the oxidation of 9-substituted 10-methylacridinium cations involved in XAEs by hydrogen peroxide in alkaline media. Three general pathways were drawn, which are termed the “light path” (chemiluminogenic) and there were two “dark paths” (non-chemiluminogenic): hydrolytic and “pseudobase”. The CL time profiles, triggered in alkaline solutions containing hydrogen peroxide, enabled us to establish crucial physicochemical parameters, including pseudo-first order kinetic constants of CL decay and relative efficiencies of emission. In order to optimize the systems’ luminogenic performance, different bases, such as sodium hydroxide, tetrabutylammonium hydroxide (TBAOH) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), as well as enhancers, such as cationic, zwitterionic and neutral surfactants (cetyltrimethylammonium chloride (CTAC), N,N-dimethyldodecylammonio-1,3-propane sulfonate (DDAPS) and Triton X-100, respectively) were tested. The results revealed the optimal CL systems, which enabled us to obtain substantially higher emissions than typical ones, based on acridinium esters or luminol. The derived parameters, characterizing the potential utility of the acridinium esters, such as stability in aqueous environments and usefulness (the product of emission efficiency and stability at a given pH), enabled us to reveal the best candidates and their practical applications. The post-reaction mixtures, analyzed by means of chromatography (RP-HPLC) and mass spectrometry (ESI-MS), allowed us to verify the occurrence and population of the products that were theoretically predicted, i.e. 10-methyl-9-acridinone (NMAON), 10-methylacridinium-9-carboxylic acid (NMACA) and substituted phenols (RPhOHs).

Graphical abstract: Effective chemiluminogenic systems based on acridinium esters bearing substituents of various electronic and steric properties

Supplementary files

Article information

Article type
Paper
Submitted
27 Aug 2015
Accepted
28 Oct 2015
First published
28 Oct 2015

Org. Biomol. Chem., 2016,14, 652-668

Author version available

Effective chemiluminogenic systems based on acridinium esters bearing substituents of various electronic and steric properties

B. Zadykowicz, J. Czechowska, A. Ożóg, A. Renkevich and K. Krzymiński, Org. Biomol. Chem., 2016, 14, 652 DOI: 10.1039/C5OB01798J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements