Issue 15, 2016

The synthesis of a series of adenosine A3 receptor agonists

Abstract

A series of 1′-(6-aminopurin-9-yl)-1′-deoxy-N-methyl-β-D-ribofuranuronamides that were characterised by 2-dialkylamino-7-methyloxazolo[4,5-b]pyridin-5-ylmethyl substituents on N6 of interest for screening as selective adenosine A3 receptor agonists, have been synthesised. This work involved the synthesis of 2-dialkylamino-5-aminomethyl-7-methyloxazolo[4,5-b]pyridines and analogues that were coupled with the known 1′-(6-chloropurin-9-yl)-1′-deoxy-N-methyl-β-D-ribofuranuronamide. The oxazolo[4,5-b]pyridines were synthesized by regioselective functionalisation of 2,4-dimethylpyridine N-oxides. The regioselectivities of these reactions were found to depend upon the nature of the heterocycle with 2-dimethylamino-5,7-dimethyloxazolo[4,5-b]pyridine-N-oxide undergoing regioselective functionalisation at the 7-methyl group on reaction with trifluoroacetic anhydride in contrast to the reaction of 4,6-dimethyl-3-hydroxypyridine-N-oxide with acetic anhydride that resulted in functionalisation of the 6-methyl group. To optimise selectivity for the A3 receptor, 5-aminomethyl-7-bromo-2-dimethylamino-4-[(3-methylisoxazol-5-yl)methoxy]benzo[d]oxazole was synthesised and coupled with the 1′-(6-chloropurin-9-yl)-1′-deoxy-N-methyl-β-D-ribofuranuronamide. The products were active as selective adenosine A3 agonists.

Graphical abstract: The synthesis of a series of adenosine A3 receptor agonists

Supplementary files

Article information

Article type
Paper
Submitted
29 Jan 2016
Accepted
09 Mar 2016
First published
14 Mar 2016

Org. Biomol. Chem., 2016,14, 3765-3781

The synthesis of a series of adenosine A3 receptor agonists

K. J. Broadley, E. Burnell, R. H. Davies, A. T. L. Lee, S. Snee and E. J. Thomas, Org. Biomol. Chem., 2016, 14, 3765 DOI: 10.1039/C6OB00244G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements