Issue 25, 2016

Synthesis and evaluation of new 2-aminothiophenes against Mycobacterium tuberculosis

Abstract

Tuberculosis (TB) and its drug resistant forms kills more people than any other infectious disease. This fact emphasizes the need to identify new drugs to treat TB. 2-Aminothiophenes (2AT) have been reported to inhibit Pks13, a validated anti-TB drug target. We synthesized a library of 42 2AT compounds. Among these, compound 33 showed remarkable potency against Mycobacterium tuberculosis (Mtb) H37RV (MIC = 0.23 μM) and showed an impressive potency (MIC = 0.20–0.44 μM) against Mtb strains resistant to isoniazid, rifampicin and fluoroquinolones. The site of action for the compound 33 is presumed to be Pks13 or an earlier enzyme in the mycolic acid biosynthetic pathway. This inference is based on structural similarity of the compound 33 with known Pks13 inhibitors, which is corroborated by mycolic acid biosynthesis studies showing that the compound strongly inhibits the biosynthesis of all forms of mycolic acid in Mtb. In summary, these studies suggest 33 represents a promising anti-TB lead that exhibits activity well below toxicity to human monocytic cells.

Graphical abstract: Synthesis and evaluation of new 2-aminothiophenes against Mycobacterium tuberculosis

Supplementary files

Article information

Article type
Paper
Submitted
17 Apr 2016
Accepted
20 May 2016
First published
25 May 2016

Org. Biomol. Chem., 2016,14, 6119-6133

Synthesis and evaluation of new 2-aminothiophenes against Mycobacterium tuberculosis

S. Thanna, S. E. Knudson, A. Grzegorzewicz, S. Kapil, C. M. Goins, D. R. Ronning, M. Jackson, R. A. Slayden and S. J. Sucheck, Org. Biomol. Chem., 2016, 14, 6119 DOI: 10.1039/C6OB00821F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements