Issue 10, 2016

Synthesis and in vitro properties of iron oxide nanoparticles grafted with brushed phosphorylcholine and polyethylene glycol

Abstract

Polyethylene glycol (PEG) is an established grafting agent for engineered materials deployed in aqueous environments including biological systems. Phosphorylcholine (PC) has shown promise as a viable strategy for enhancing the biofunctionality of surfaces and structures. Here we developed a new and facile strategy for grafting superparamagnetic iron oxide nanoparticles (IONPs) by phosphonic acid terminated poly(2-(methacryloyloxy)ethyl phosphorylcholine) brushes, synthetized by reversible addition–fragmentation chain transfer (RAFT) polymerization. Properties of covalently bound IONPs with PC, PEG or PEG : PC brush-like structures via a “grafting onto” approach through robust bidentate Fe–O–P bonds were compared. The presence of modified polymers on the functionalized IONP surfaces was proved using both ATR-FTIR and TGA. The resultant synthesized IONPs were characterized for their physicochemical and biological aspects. Interestingly, compared with PEG combs, specifically, PC brushes rendered comparable or enhanced suspendability, stability, biocompatibility and cellular distribution. We attribute these characteristics to the biomimetic nature and larger polarity of PC in contrast to the synthetic and hydrophilic PEG. These synthesis strategies and characterizations may prove beneficial to the design and applications of IONPs in nanobiotechnology and nanomedicine.

Graphical abstract: Synthesis and in vitro properties of iron oxide nanoparticles grafted with brushed phosphorylcholine and polyethylene glycol

Supplementary files

Article information

Article type
Paper
Submitted
21 Dec 2015
Accepted
03 Feb 2016
First published
05 Feb 2016

Polym. Chem., 2016,7, 1931-1944

Synthesis and in vitro properties of iron oxide nanoparticles grafted with brushed phosphorylcholine and polyethylene glycol

T. Blin, A. Kakinen, E. H. Pilkington, A. Ivask, F. Ding, J. F. Quinn, M. R. Whittaker, P. C. Ke and T. P. Davis, Polym. Chem., 2016, 7, 1931 DOI: 10.1039/C5PY02024G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements