An ATRP-based approach towards water-borne anisotropic polymer–Gibbsite nanocomposites†
Abstract
Polymer–Gibbsite composite latex particles were synthesised via an atom transfer radical polymerisation (ATRP) based approach. A random ATRP cooligomer, consisting of acrylic acid and butyl acrylate units, was synthesized using ATRP. This cooligomer was used as a stabiliser for the Gibbsite platelets and served as a macroinitiator for copper-mediated starved-feed emulsion polymerisation. Using a hydrophobic ligand for Cu2+ and optimising the feeding profile of ascorbic acid and the [ascorbic acid]/[Cu2+] ratio, successful Activator ReGenerated by Electron Transfer (ARGET) ATRP emulsion polymerisation was conducted in a controlled way, using only the anionic ATRP cooligomer as a surfactant. Cryo-TEM characterisation revealed a “muffin-like” morphology of the resulting composite latex particles, which was not affected by monomer feed composition and feeding profile.