Nanoporous polystyrene–porphyrin nanoparticles for selective gas separation†
Abstract
Highly cross-linked polystyrene–porphyrin nanoparticles were synthesized by a facile approach using emulsion free-radical copolymerization of styrene (St) with a tetra-functional cross-linker, 5,10,15,20-tetrakis(4-phenylmethacrylate)-21H,23H-porphine (PO), and a bifunctional cross-linker, divinylbenzene (DVB), in aqueous solution. Two samples were prepared, PO-St-DVB(1) and PO-St-DVB(2), with 0.7 and 2.6 mol% PO, respectively. The cross-link density of the particles increased with the increase of the PO content at a constant St/cross-linkers mol feed ratio. The morphology and the size of the polymer particles were studied by scanning and transmission electron microscopies. Gas adsorption measurements showed that the polystyrene–porphyrin nanoparticles possessed an inherently large surface area when dried by supercritical CO2 from their dispersions in EtOH or DMF. In particular, the sample with the highest PO content (PO-St-DVB(2)) exhibited a Brunauer–Emmett–Teller (BET) surface area up to 334 m2 g−1 (282 m2 g−1 calculated from CO2 adsorption) with a total pore volume of 0.37 cm3 g−1 when dried from EtOH. Analysis of the CO2 and CH4 adsorption data using the ideal adsorption solution theory revealed that the PO-St-DVB(2) nanoparticles exhibited an adsorption selectivity for CO2 over CH4 of 25 at 263 K and 12 at 273 K, rendering them attractive candidates for use in CO2/CH4 separation and carbon dioxide sequestration processes.