Issue 29, 2016

Highly sulfonated co-polyimides containing hydrophobic cross-linked networks as proton exchange membranes

Abstract

A novel diamine monomer bearing double hydrophobic cross-linkable tetrafluorostyrol side-groups has been successfully synthesized. Based on this monomer along with 4,4′-diaminodiphenyl ether-2,2′-disulfonic acid (ODADS) and 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA), a series of cross-linked highly sulfonated co-polyimide (CSPIy-6FATFVPx) membranes with IEC values ranging from 2.07 to 2.41 meq g−1 were prepared via a high temperature poly-condensation, followed by a thermal cross-linking reaction. The SPI were synthesized by high temperature polymerization. The CSPI membranes were obtained from the SPI membrane by thermal crosslinking reation. The polymerization and crosslinking reation were not performed in one pot. The CSPIy-6FATFVPx membranes showed significantly excellent performance, especially the high proton conductivity (0.153–0.210 S cm−1 at 80 °C), low water uptake (54.1%–87.1% at 80 °C) and swelling ratio (15.5%–23.0% at 80 °C). Furthermore, the CSPIy-6FATFVPx membranes also exhibited outstanding thermal stability (5% weight loss when the temperature exceed 320 °C), excellent hydrolytic stability and mechanical properties. The results indicate that CSPIy-6FATFVPx are promising candidates as proton exchange membranes in fuel cell technology.

Graphical abstract: Highly sulfonated co-polyimides containing hydrophobic cross-linked networks as proton exchange membranes

Supplementary files

Article information

Article type
Paper
Submitted
11 Apr 2016
Accepted
07 Jun 2016
First published
08 Jun 2016

Polym. Chem., 2016,7, 4728-4735

Highly sulfonated co-polyimides containing hydrophobic cross-linked networks as proton exchange membranes

H. Yao, N. Song, K. Shi, S. Feng, S. Zhu, Y. Zhang and S. Guan, Polym. Chem., 2016, 7, 4728 DOI: 10.1039/C6PY00637J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements