Issue 42, 2016

A logic gate for external regulation of photopolymerization

Abstract

The use of photocatalysts for visible light mediated reversible deactivation radical polymerization (RDRP) provides an efficient route for the synthesis of well-defined polymers with spatial, temporal and sequence control. However, current techniques are often limited to the use of organic solvents with only few reports exploring polymerization in biologically relevant media, such as water. In addition, the use of photocatalysts to modulate polymerization rates by manipulating absorption wavelengths and intensity of light provides an additional layer of control over polymerization. By using a water soluble zinc porphyrin, Zn(II) meso-tetra (4-sulfonatophenyl) porphyrin (ZnTPPS4−), we were able to carry out successful photopolymerizations with various water soluble monomers in an aqueous environment. More interestingly, the pH of the polymerization mixtures affect the performance of the catalyst, where faster polymerization was observed in near-neutral and basic environments in comparison to an acidic environment. In the presence of low energy red light irradiation (λmax = 635 nm, 0.828 mW cm−2), we were able to carry out successful RAFT photopolymerization, yielding polymers with well-defined molecular weights and molecular weight distributions that are as low as 1.07.

Graphical abstract: A logic gate for external regulation of photopolymerization

Supplementary files

Article information

Article type
Paper
Submitted
04 Aug 2016
Accepted
17 Aug 2016
First published
06 Sep 2016

Polym. Chem., 2016,7, 6437-6449

A logic gate for external regulation of photopolymerization

S. Shanmugam, J. Xu and C. Boyer, Polym. Chem., 2016, 7, 6437 DOI: 10.1039/C6PY01361A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements