Issue 7, 2016

Synthesis and properties of nanocrystalline π-SnS – a new cubic phase of tin sulphide

Abstract

We report on the synthesis of the newly discovered cubic phase of tin sulfide π-SnS and compare its properties to the well-known phase of tin sulfide, α-SnS. Shape control was achieved by the variation of synthesis parameters, resulting in cubic, rhombic dodecahedral and tetrahedral shapes of the π-SnS nanoparticles. X-ray diffraction provided authentication of the proposed model and refined determination of the lattice parameter a = 11.595 Å. Raman spectroscopy showed a substantial shift towards higher energies and peak splitting for π-SnS. Optical absorption spectroscopy indicated an indirect band gap of 1.53 eV, in good agreement with density functional theory (DFT) calculations indicating a band gap greater than that of α-SnS. DFT total energy calculations show that the π-SnS phase is energetically similar to α-SnS, and is significantly more stable than the hypothetical ideal rocksalt structure of SnS.

Graphical abstract: Synthesis and properties of nanocrystalline π-SnS – a new cubic phase of tin sulphide

Supplementary files

Article information

Article type
Paper
Submitted
03 Nov 2015
Accepted
23 Dec 2015
First published
05 Jan 2016

RSC Adv., 2016,6, 5848-5855

Author version available

Synthesis and properties of nanocrystalline π-SnS – a new cubic phase of tin sulphide

R. E. Abutbul, E. Segev, L. Zeiri, V. Ezersky, G. Makov and Y. Golan, RSC Adv., 2016, 6, 5848 DOI: 10.1039/C5RA23092F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements