Issue 8, 2016

Protein adsorption by a high-capacity cation-exchange membrane prepared via surface-initiated atom transfer radical polymerization

Abstract

In this study, a weak cation-exchange (WCX) membrane was prepared via a “post-polymerization modification” method, which involved the surface-initiated atom transfer radical polymerization of glycidyl methacrylate (GMA) and subsequent two-step derivation. By varying the graft time of poly-GMA, a series of WCX membranes with different densities of carboxyl groups were fabricated. For the membrane with a graft time of 12 h, a high adsorption capacity of 125.0 mg mL−1 was obtained by using lysozme (Lys) as a model protein, which is higher than that reported. The new parameters, the utilization percentage of carboxyl (UP) and the stoichiometric displacement parameter (Z) were introduced to theoretically investigate how the ligand density affects the adsorption behavior of Lys for the first time. The UP revealed an “increase first and then decrease” trend with the prolonging of graft time, which may result from the mutual effect of the flexibility of the polymer chain, the steric hindrance and the “adsorption-caused hindrance” effect. Remarkably, the Z value was found to increase with the prolonging of graft time, suggesting that more effective binding sites were interacting with a protein molecule when the density of carboxyl was increased. Finally, the WCX membranes were applied to purify Lys from egg white with a high recovery of 95.7%, which depends significantly on the adsorption capacity of the membranes.

Graphical abstract: Protein adsorption by a high-capacity cation-exchange membrane prepared via surface-initiated atom transfer radical polymerization

Supplementary files

Article information

Article type
Paper
Submitted
21 Nov 2015
Accepted
05 Jan 2016
First published
08 Jan 2016

RSC Adv., 2016,6, 6415-6422

Protein adsorption by a high-capacity cation-exchange membrane prepared via surface-initiated atom transfer radical polymerization

M. He, C. Wang and Y. Wei, RSC Adv., 2016, 6, 6415 DOI: 10.1039/C5RA24678D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements