Microwave-enhanced aqueous biphasic dehydration of carbohydrates to 5-hydroxymethylfurfural†
Abstract
We describe herein an efficient microwave-assisted aqueous biphasic dehydration of carbohydrates to 5-hydroxymethylfurfural (HMF). The effects of several alkali metal salts in aqueous phase, organic solvents as an extractive phase and Lewis acids are evaluated on the reaction. Specifically, starting from fructose, the use of bromide salts in aqueous phase and the common organic solvent MeCN or lignocellulose-derived γ-valerolactone (GVL) as organic extractors are highly beneficial, leading to excellent HMF yields of up to 91% with HCl as a Brønsted acid catalyst. In conjunction with an isomerization catalyst, the method was applicable to glucose as well as various disaccharides and cellulose, affording HMF in notably good yields, particularly with GVL as an extractor and reusable Amberlyst-38(wet) as an acid catalyst. The exceptionally high HMF yields obtained in aqueous solutions is attributed to the combined effect of the biphasic reaction system and the application of microwaves, which ensures short reaction times and minimized by-product formation thereof.