Issue 18, 2016

Chemical synthesis of 3D copper sulfide with different morphologies for high performance supercapacitors application

Abstract

3D copper sulfide (Cu2S) with different morphologies for high performance supercapacitors were synthesized via a simple, cost effective successive ionic layer adsorption and reaction (SILAR) method. Further, these Cu2S nanostructure demonstrate excellent surface properties like uniform surface morphology, large surface area of Cu2S samples. X-ray diffraction (XRD) X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy of these samples confirmed the crystallinity and crystal structure of Cu2S. The electrochemical studies of Cu2S samples have been investigated by cyclic voltammetry, charge–discharge and electrochemical impedance spectroscopy techniques. The maximum specific capacitance of flower-like and integrated nanotubes samples are found 761 and 470 F g−1, respectively, at a scan rate of 5 mV s−1. The electrodes are prepared using a simple four-beaker SILAR system at ambient conditions, thus providing an easy approach to fabricate high-power and high-energy supercapacitors. Further, EIS analysis shows a lower ESR value, high power performance, excellent rate as well as frequency response to flower-like Cu2S sample. The Ragone plot shows better power and energy densities of all Cu2S nanostructured samples. The long-term cycling performance of Cu2S is examined with excellent retention of 95%. The high surface area provided by the porous and more conductive 3D nickel foam have been utilized properly to enhance the electrochemical properties of copper sulfides with charge transport and storage.

Graphical abstract: Chemical synthesis of 3D copper sulfide with different morphologies for high performance supercapacitors application

Supplementary files

Article information

Article type
Paper
Submitted
01 Dec 2015
Accepted
10 Jan 2016
First published
26 Jan 2016

RSC Adv., 2016,6, 14844-14851

Author version available

Chemical synthesis of 3D copper sulfide with different morphologies for high performance supercapacitors application

R. N. Bulakhe, S. Sahoo, T. T. Nguyen, C. D. Lokhande, C. Roh, Y. R. Lee and J. Shim, RSC Adv., 2016, 6, 14844 DOI: 10.1039/C5RA25568F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements